?
" 生物技术前沿一周纵览(2017年8月18日)
小麦穗型调控分子??榻馕鋈〉眯陆?span lang="EN-US">
小麦是世界上最重要的粮食作物之一,在我国粮食安全中发挥着重要作用。研究人员利用前人筛选出的我国小麦微核心种质,通过转录组关联分析和基因共表达网络分析的策略研究了幼穗发育的基因表达调控网络,并验证了其中的关键因子在穗粒数调控中的作用。研究结果得到了多个与穗粒数相关的核心共表达???。研究人员对其中10个基因进行了过表达分析,发现过表达基因TaTFL1可以延长幼穗分化时间,增加小穗数、小花数和穗粒数;过表达基因TaPAP2, TaVRS1可以缩短幼穗分化时间,减少小穗数、小花数和穗粒数。以上研究结果为研究人员进一步解析小麦穗发育的遗传调控提供了理论基础,并对有效利用与穗粒数相关的分子??榻辛顺醪郊际跹橹?。(Plant Physiology)
研究揭示叶片低光光合效率与生物产量的关系
改善冠层光合效率是提高作物产量的重要途径。冠层光合效率由三方面决定,包括叶面积指数、冠层形态结构和叶片光合特征。研究利用基因组遗传力(SNP-based Heritability)结合2.3M全基因组覆盖的SNP变异信息,证明低光光合效率(Alow)具有高度遗传性;进一步为量化低光光合效率与生物量的关系,本研究结合线性回归模型(LRMs)和逐步特征选择(Feature selection)方法,发现Alow在不同地点和组合的数据集中均表现出与生物量有高度相关性。同时,在11个当代商业化水稻品种中,Alow表现出很大变异,说明在人工驯化过程中,Alow未受到强烈选择。该项研究首次揭示了叶片低光光合效率与生物产量的关系,这对未来提高水稻产量提供了全新改造靶标。(Plant Physiology)
破译植物组蛋白特有的修饰位点
组蛋白包含着生命个体生长、发育的信息,这些信息通过组蛋白上的不同修饰位点以及不同组蛋白变体来完成功能。与动物不同,植物的个体生命始于一粒种子,处于未分化的状态。如果组蛋白修饰包含了生物发育过程的信息,那么动、植物中或许存在组蛋白上特异的修饰位点,并调控着各自特有的生长发育进程。研究发现拟南芥的磷酸激酶MUT9P-LIKE-KINASE (MLK4)能够磷酸化组蛋白H2A第95位丝氨酸,该丝氨酸位点仅存在于部分藻类、以及陆生植物的苔藓、蕨类、祼子植物和被子植物中,而在酵母、果蝇、或哺乳动物(人、小鼠)中没有发现该位点,表明是植物中特异的组蛋白位点。(The Plant Cell)
植物基因组编辑研究综述
序列特异性核酸酶使得基因组编辑成为可能,快速推动了基础和应用生物学的发展。 (Nature Plants)
科学家发现RNA甲基化调控精子发生新机制
研究团队首先利用CRISPR-Cas9技术构建了生殖细胞中条件性敲除Mettl3的小鼠,揭示了Mettl3条件性敲除小鼠的雄性不育和睾丸变小的表型,进一步研究表明Mettl3敲除导致小鼠睾丸精原细胞分化异常,减数分裂起始受阻。在获得Mettl3敲除小鼠不育表型之后,发现Mettl3缺失导致精子发生(包括精原干细胞维持、分化和减数分裂等)相关基因的表达改变。结合单碱基分辨率的m6A-miCLIP测序发现,Mettl3介导的m6A修饰调控精子发生相关基因的可变剪接,从而导致精子发生过程异常。
该合作研究团队在前期合作研究中发现了miRNA介导的RNA甲基化修饰m6A甲基化位点选择性机制(Chen et al. Cell Stem Cell 2015),上述Mettl3介导的m6A调控精原干细胞分化和减数分裂起始机制的阐明,为进一步研究RNA甲基化调控的生物功能和RNA表观遗传提供依据,为研究与正常生理或异常病理生命活动关联分子机理提供新的表观调控研究方向。(Cell Research)
Tigliane类天然产物研究取得进展
大戟科和瑞香科植物中广泛存在的1 。据此可能的生源合成机制,研究组开展了化合物 (Organic Letters )
大豆circRNA种类及功能
大豆是一种古老的四倍体,大多数大豆基因是具有多个拷贝的旁系同源基因。研究利用高通量测序技术共鉴定出大豆5372个circRNAs,其中约80% 的circRNA是由旁系同源基因产生的旁系同源circRNAs。尽管旁系同源基因序列具有高度同源性,旁系同源基因也可产生不同表达模式的不同的旁系同源circRNAs。数据分析结果显示,2134个circRNA经模拟预测后靶向92个miRNA。 circRNAs和circRNA异构体在大豆中表现出组织特异性表达模式?;?span lang="EN-US">circRNA宿主基因的功能,大豆circRNAs可能参与许多生物过程,如发育过程,多重生物过程和代谢过程等。 (ResearchGate)
来源: